1º passo: decompor cada um dos números. 2º passo: conhecendo as fatorações, vamos encontrar cada um dos fatores em comum desses números. 3º passo: determinar o MDC, que é o produto (multiplicação) dos fatores que eles possuem em comum.
No caso de números, o fator comum será o mdc entre os coeficientes. E é claro que, ao aplicarmos a produtiva na expressão acima, obtemos a original. E, para determinar os termos entre os parênteses na forma fatorada, basta, mais uma vez, dividirmos cada termo da expressão original pelo fator comum encontrado.
Máximo divisor comum (MDC) Máximo divisor comum, representado por MDC, de dois ou mais números inteiros positivos é o maior número que está na lista de divisores de cada um desses números simultaneamente.
O máximo divisor comum (MDC) é o maior número que é divisor de dois ou mais números simultaneamente. Para encontrá-lo, podemos escrever a lista de divisores de cada um desses números e compará-las, buscando o maior divisor em comum entre esses números.
1º passo: decompor cada um dos números. 2º passo: conhecendo as fatorações, vamos encontrar cada um dos fatores em comum desses números. 3º passo: determinar o MDC, que é o produto (multiplicação) dos fatores que eles possuem em comum.
Para calcular o MMC (121,2), inicialmente vamos decompor em fatores primos o número e, em seguida, multiplicar esses fatores. O resultado da multiplicação será o MMC. Assim, o MMC (121,2) = 2 ·11 ·11 = 242.
Como exemplo, vamos calcular o MDC dos números 12 e 18. Inicialmente decompomos estes números em seus fatores primos (para encontrar os divisores): Agora podemos exibir o conjunto dos divisores D(12,18) = {2,3,6}, pois 2|12 e 2|18, 3|12 e 3|18, 6|12 e 6|18. mdc(12,18) = max{i: i pertença à D(12,18)} = max{2,3,6} = 6.
O máximo divisor comum, ou MDC, de dois ou mais números inteiros é o maior divisor inteiro comum a todos eles. Por exemplo, o m.d.c. de 16 e 36 é o 4, e denotamos isso por MDC 16, 36 = 8. Já o MDC de 30, 54 e 72 é o 6, o que é denotado por MDC 30, 54, 72 = 6.
Existem vários algoritmos para calcular o MDC (Máximo Divisor Comum) entre dois números. O processo mais fácil e mais rápido, consiste em decompor cada um dos números em produtos de fatores primos, isto é, vamos dividindo cada um dos números sucessivamente por números primos até que o quociente seja 1.
Trinômio do quadrado perfeito é o 3º caso de fatoração de expressão algébrica. Ele só pode ser utilizado quando a expressão algébrica for um trinômio (polinômio com três monômios) e esse trinômio formar um quadrado perfeito. Nem todos os trinômios acima podem ser fatorados utilizando o quadrado perfeito.
Assim, quando falamos no produto entre dois números, referimo-nos ao resultado da multiplicação entre eles. Cada número que é multiplicado recebe o nome de fator. Logo, na multiplicação 9·3·7, os fatores são: 9, 3 e 7.
Agrupamento é o método pelo qual simplificamos uma expressão algébrica, agrupando os termos semelhantes (termos em comum). Ao usarmos o método do agrupamento, necessitamos fazer uso da fatoração: termo comum em evidência.
O 12 e o 30 possuem alguns divisores em comum, são eles o 2, 3 e 6. O maior deles é o 6. Por essa razão, dizemos que o máximo divisor comum entre 30 e 12 é o 6 ou, simplesmente, MDC (30, 12) = 6. Mas existem outras formas de encontrar o MDC entre esses números.
12 = (12, 24, 36, 48, 60, 72, 84, 96, ...) Observe que dentre os múltiplos descritos, podemos verificar que o número 72 é o menor múltiplo comum aos algarismos 12, 18 e 24. A 2ª regra consiste em determinar o mínimo múltiplo comum fatorando todos os números de uma única vez.
O mínimo múltiplo comum (MMC) entre números inteiros é o menor número, também inteiro, que é múltiplo de todos esses números ao mesmo tempo. Por exemplo, o MMC entre 2 e 12 é 12, pois os múltiplos de 2 são 2, 4, 6, 8, 10, 12… e os de 12 são: 12, 24, …
Liste todos os fatores de 16,24 para encontrar os fatores comuns. Os fatores comuns de 16,24 são 1,2,4,8 1 , 2 , 4 , 8 . O MDC dos fatores numéricos 1,2,4,8 1 , 2 , 4 , 8 é 8 .