Para desenhar uma reta, só são necessários dois pontos. Esse é mais um postulado proveniente da geometria. Uma reta é uma figura geométrica que possui uma única dimensão. Isso significa que só é possível tomar uma medida de qualquer objeto definido dentro de uma reta.
Desse modo, as retas possuem infinitos pontos e nenhum espaço entre eles. As retas são objetos que possuem uma dimensão apenas, assim, só é possível tomar uma medida em qualquer objeto que esteja definido dentro de uma reta: o comprimento.
Quantos pontos são necessários para determinar uma reta?
Para determinar uma reta é necessário dois pontos distintos. Para determinar um plano é necessário 3 pontos. Aqui podemos utilizar o exemplo de uma cadeira tripé.
Numa reta, bem como fora dela, existem infinitos pontos, mas dois pontos distintos determinam uma única reta. Em um plano e também fora dele, há infinitos pontos.
Portanto, retas podem ser “desenhadas” a partir de apenas dois pontos, contudo, elas são infinitas tanto na direção do primeiro ponto quanto na direção do segundo. Tendo em vista que as retas possuem infinitos pontos, conclui-se que elas também possuem comprimento infinito.
Retas são figuras geométricas primitivas que não possuem definição. São formadas por pontos e são infinitas em qualquer direção. Retas são figuras geométricas primitivas formadas por conjuntos de pontos.
Uma linha reta ou, simplesmente, uma reta é uma linha que, à semelhança de outros elementos geométricos como, por exemplo, o ponto, não tem uma definição matemática rigorosa. Em termos simples poderá dizer-se que se trata de uma linha sem curvatura ou sinuosidade, sem espessura e de comprimento infinito.
Qualquer ponto cujas coordenadas formam uma solução para equação da reta podemos dizer que este ponto pertence à reta. Para saber se um ponto pertence à uma reta basta verificar se suas coordenadas formam uma solução para a sua equação. Exemplo: A equação y = − 3 x + 1 é uma reta com coeficiente angular igual a -3.
Com a equação reduzida da reta, é possível calcular quais são os pontos que pertencem a essa reta e quais não pertencem. O comportamento da reta pode ser descrito pela equação reduzida y = mx + n.
A equação geral de uma reta é igual a ax + by + c = 0, em que a, b e c são coeficientes reais e a e b são diferentes de zero. Para encontrar a equação geral de uma reta, é necessário conhecer pelo menos dois pontos dessa equação.
Quantos pontos no mínimo são necessários para definir uma reta?
Retas são conjuntos de pontos compreendidos como linhas infinitas que não fazem curvas. Embora sejam formadas por pontos, também não possuem definição, mas apenas essa característica. Obviamente, são necessários infinitos pontos para construir uma reta.
A reta possui infinitos pontos, e todos esses pontos pertencem a ela, isto é, a reta é infinita para ambas as direções. A partir desse conceito primitivo é que conseguimos definir semirreta. O segmento de reta é uma parte de uma reta.
As retas são conjuntos de pontos que não fazem curvas. Elas são infinitas para as duas direções. Como esses pontos não estão no mesmo lugar, é possível medir a distância entre eles. Entretanto, como os pontos continuam não tendo dimensão ou forma, não é possível medir sua largura.
✓ Por dois pontos distintos podemos traçar uma única reta. Desta forma, dois pontos determinam uma reta. Um ponto divide a reta em duas semirretas que possuem sentidos opostos. A semirreta possui começo, mas não possui fim.
Considerando dois pontos em uma reta, podemos escrever uma equação para essa reta, calculando o coeficiente angular entre esses pontos e, em seguida, calculando a interceptação em y na equação reduzida da reta y=mx+b.
Postulados da existência (E1) Existe reta e numa reta, bem como fora dela, existem infinitos pontos. (E2) Existe plano e num plano, bem como fora dele, existem infinitos pontos. Postulados da determinaç˜ao (D1) Dois pontos distintos determinam uma única reta que passa por eles.
A condição de alinhamento de três pontos é o método que utilizamos para verificar se três pontos são colineares ou não colineares. Dizemos que os pontos são colineares se eles estão alinhados, ou seja, se existe uma reta que passa por esses três pontos, eles são colineares.
As retas paralelas são, basicamente, duas linhas retas que não apresentam um ponto em comum. Em outras palavras, são duas retas que não se encontram, mas que, necessariamente, tem o mesmo sentido. Outra característica que as definem é que elas mantêm a mesma medida de inclinação, chamado de coeficiente angular.
Para verificarmos se os pontos estão alinhados, podemos utilizar a construção gráfica determinando os pontos de acordo com suas coordenadas posicionais. Outra forma de determinar o alinhamento dos pontos é através do cálculo do determinante pela regra de Sarrus envolvendo a matriz das coordenadas.
Retas concorrentes possuem um ponto em comum, pois elas se cruzam. As retas paralelas não possuem ponto em comum. A semirreta possui origem, mas é ilimitada no outro sentido, isso é, possui início, mas não tem fim.
Para calcular o comprimento desse segmento de reta, utilizamos uma fórmula deduzida do teorema de Pitágoras. Dados os pontos A(xA, yA) e B (xB, Yb), para calcular a distância entre esses dois pontos, utilizamos a fórmula dAB² = (xB – xA)² + (yB – yA)².