Desse modo, as retas possuem infinitos pontos e nenhum espaço entre eles. As retas são objetos que possuem uma dimensão apenas, assim, só é possível tomar uma medida em qualquer objeto que esteja definido dentro de uma reta: o comprimento.
Numa reta, bem como fora dela, existem infinitos pontos, mas dois pontos distintos determinam uma única reta. Em um plano e também fora dele, há infinitos pontos. As expressões infinitos pontos ou infinitas retas, significam tantos pontos ou retas quantas você desejar.
Portanto, retas podem ser “desenhadas” a partir de apenas dois pontos, contudo, elas são infinitas tanto na direção do primeiro ponto quanto na direção do segundo. Tendo em vista que as retas possuem infinitos pontos, conclui-se que elas também possuem comprimento infinito.
Retas são conjuntos de pontos compreendidos como linhas infinitas que não fazem curvas. Embora sejam formadas por pontos, também não possuem definição, mas apenas essa característica. Obviamente, são necessários infinitos pontos para construir uma reta.
Para saber se um ponto pertence à uma reta basta verificar se suas coordenadas formam uma solução para a sua equação. Exemplo: A equação y = − 3 x + 1 é uma reta com coeficiente angular igual a -3. Observe que os pontos A = ( 1 , − 2 ) e B = ( 0 , 1 ) pertencem a reta.
O ponto não tem dimensão. Ele pode ser, por exemplo, um toque da caneta no papel. Representamos pontos no espaço sempre com letras maiúsculas (A, B, P, M, ...), exemplo: Por um ponto no espaço, passam infinitas retas.
Com a equação reduzida da reta, é possível calcular quais são os pontos que pertencem a essa reta e quais não pertencem. O comportamento da reta pode ser descrito pela equação reduzida y = mx + n.
O elemento mais simples de um plano é o ponto, uma entidade que não tem dimensões. Bastam três pontos para definir um plano. O segundo elemento mais simples é a reta – um conjunto de infinitos pontos, enfileirados, sempre em uma mesma direção e nos dois sentidos.
Quantos pontos são necessários para determinar uma reta?
Para desenhar uma reta, só são necessários dois pontos. Esse é mais um postulado proveniente da geometria. Uma reta é uma figura geométrica que possui uma única dimensão.
Existem infinitos pontos em cada reta e fora dela. Por um ponto passam infinitas retas. Existem infinitos pontos dentro e fora do plano. Para determinar uma reta é necessário dois pontos distintos.
A condição de alinhamento de três pontos é o método que utilizamos para verificar se três pontos são colineares ou não colineares. Dizemos que os pontos são colineares se eles estão alinhados, ou seja, se existe uma reta que passa por esses três pontos, eles são colineares.
Para calcular o comprimento desse segmento de reta, utilizamos uma fórmula deduzida do teorema de Pitágoras. Dados os pontos A(xA, yA) e B (xB, Yb), para calcular a distância entre esses dois pontos, utilizamos a fórmula dAB² = (xB – xA)² + (yB – yA)².
✓ Por dois pontos distintos podemos traçar uma única reta. Desta forma, dois pontos determinam uma reta. Um ponto divide a reta em duas semirretas que possuem sentidos opostos. A semirreta possui começo, mas não possui fim.
São retas que possuem pelo menos dois pontos em comum. Como reta alguma faz curva, se duas retas possuem dois pontos em comum, elas possuem todos os pontos em comum. O resultado disso é visto geometricamente como uma reta só.
Por um ponto passam infinitas retas. Por dois pontos distintos passa uma única reta. Três pontos não colineares determinam um único plano que os contém. Se uma reta tem dois pontos distintos num plano, então ela está contida no plano.
A equação geral da reta é a equação ax + by + c = 0, com a e b diferentes de 0. Os pontos pertencentes à reta satisfazem a sua equação geral. Podemos encontrar a equação da reta sabendo quais são os dois pontos pertencentes à reta.
As retas numéricas são uma relação biunívoca entre os números reais e os pontos da reta. Isso significa que cada ponto da reta é representado apenas por um número real e que cada número real representa apenas um número da reta.
Duas retas são concorrentes se possuírem apenas um ponto em comum. E seus coeficientes angulares poderão ser diferentes ou um existir e o outro não. As retas u e t são coincidentes e as inclinações das retas são diferentes de 90°. Assim, seus coeficientes angulares serão diferentes.
Retas paralelas: são retas que não possuem interseção e estão em um mesmo plano. Retas concorrentes são retas que têm um ponto em comum. As retas perpendiculares são retas concorrentes que formam entre si um ângulo reto. Retas reversas são retas que não têm interseção entre elas e que não são paralelas.
Retas concorrentes: duas retas são classificadas como concorrentes quando elas possuem um ponto em comum, ou seja, quando elas se encontram em um único ponto. Quando essas retas se cruzam formando um ângulo de 90° entre si, temos um caso particular de retas concorrentes, que são as retas perpendiculares.