Retas são figuras geométricas planas ou espaciais que podem ser classificadas em concorrentes, coincidentes e paralelas. Ouça o texto abaixo! Na Geometria, as retas são definidas apenas como conjuntos de pontos. Sabemos, além disso, que as retas são linhas que não fazem curvas e que são ilimitadas e infinitas.
Em geometria, podemos classificar as retas em paralelas, concorrentes, perpendiculares ou coincidentes de acordo com os pontos que elas possuem em comum. Neste vídeo você aprenderá a diferença entre essas classificações a partir de exemplos práticos e muito bem ilustrados.
As retas são linhas sem curvas que devem estar alinhadas em uma dimensão, espaço ou plano. Existem vários tipos no estudo da geometria. As mais comuns são as inclinadas, horizontais, verticais, paralelas, coincidentes, reversas, coplanares, transversais, perpendiculares e retas concorrentes.
Retas são figuras geométricas primitivas formadas por conjuntos de pontos. O fato de serem primitivas significa que não existe uma definição para elas, contudo, aceitamos que retas são linhas que não fazem curva.
Retas paralelas: são retas que não possuem interseção e estão em um mesmo plano. Retas concorrentes são retas que têm um ponto em comum. As retas perpendiculares são retas concorrentes que formam entre si um ângulo reto. Retas reversas são retas que não têm interseção entre elas e que não são paralelas.
Portanto, retas podem ser “desenhadas” a partir de apenas dois pontos, contudo, elas são infinitas tanto na direção do primeiro ponto quanto na direção do segundo. Tendo em vista que as retas possuem infinitos pontos, conclui-se que elas também possuem comprimento infinito.
Retas concorrentes possuem um ponto em comum, pois elas se cruzam. As retas paralelas não possuem ponto em comum. A semirreta possui origem, mas é ilimitada no outro sentido, isso é, possui início, mas não tem fim.
Os segmentos de reta são classificados como: consecutivos, colineares, congruentes e adjacentes. Segmentos Consecutivos: Dois segmentos de reta são consecutivos se, a extremidade de um deles é também extremidade do outro, ou seja, uma extremidade de um coincide com uma extremidade do outro.
Na Geometria, as retas são definidas apenas como conjuntos de pontos. Sabemos, além disso, que as retas são linhas que não fazem curvas e que são ilimitadas e infinitas. Desse modo, as retas possuem infinitos pontos e nenhum espaço entre eles.
As retas podem ocupar três posições: horizontal, vertical e inclinada. A linha do horizonte está na posição horizontal. Toda reta que está em uma posição semelhante a da linha do horizonte, dizemos que é uma reta horizontal.
As retas são conjuntos de pontos que não fazem curva, não possuem espaços entre os pontos e são infinitas para as duas direções. Ao sofrer um corte, uma reta transforma-se em duas semirretas. Por sua vez, ao sofrer um corte, uma semirreta transforma-se em um segmento de reta e em outra semirreta.
Um ponto divide a reta em duas semirretas que possuem sentidos opostos. A semirreta possui começo, mas não possui fim. ➢ Segmento de reta É parte da reta limitada por dois pontos. O segmento de reta tem começo e tem fim.
Retas são conjuntos de pontos que formam uma figura com formato de linha que não faz curva. Planos são conjuntos de retas que formam uma superfície plana e que também não possuem distorção alguma.
pontos são normalmente batizados com letras maiúsculas: A, B, C, O…; retas são geralmente indicadas por letras minúsculas: r, t, s…; e planos costumam ser indicados por letras do alfabeto grego: α (alfa), β (beta) e γ (gama).
Qualquer ponto cujas coordenadas formam uma solução para equação da reta podemos dizer que este ponto pertence à reta. Para saber se um ponto pertence à uma reta basta verificar se suas coordenadas formam uma solução para a sua equação. Exemplo: A equação y = − 3 x + 1 é uma reta com coeficiente angular igual a -3.
Retas transversais são retas que cruzam um par ou um feixe de retas paralelas. Ainda pensando nas ruas dos bairros e das cidades, quando temos uma visão panorâmica é possível encontrar ruas transversais. Observe um exemplo na magem abaixo. Imagem 2: Ruas transversais.
A equação geral de uma reta é igual a ax + by + c = 0, em que a, b e c são coeficientes reais e a e b são diferentes de zero. Para encontrar a equação geral de uma reta, é necessário conhecer pelo menos dois pontos dessa equação.
Os segmentos de retas possuem um ponto inicial e um ponto final. Eles podem ser consecutivos, adjacentes e colineares. Ouça o texto abaixo! Um segmento de reta nada mais é do que uma parte de uma reta que possui um ponto inicial e um ponto final, chamados de “extremos”.
As retas numéricas são uma relação biunívoca entre os números reais e os pontos da reta. Isso significa que cada ponto da reta é representado apenas por um número real e que cada número real representa apenas um número da reta. Essa relação pode ser comparada às funções bijetoras.
A noção de reta (AO 1945: recta) ou linha reta foi introduzida por matemáticos antigos para representar objetos retos (isto é, sem curvatura) com largura e profundidade desprezíveis. As retas são uma idealização de tais objetos.