Uma função linear é definida genericamente como f(x) = a.x. Esse é um caso particular de função afim, também conhecida como função de primeiro grau, contudo não existe valor para o coeficiente b, ou seja, b = 0.
Função linear é o caso particular de função do 1° grau quando b = 0 . Assim, a forma geral de uma função linear é f(x)=ax. O gráfico de uma função linear é uma reta que passa pela origem, que é o ponto (0,0).
Quais são as características de uma função linear?
A função linear é aquela em que temos b = 0, isto é, sua lei de formação é do tipo f(x) = a.x, com a real e diferente de zero. Observe que toda função que não possui valor para o coeficiente b é classificada como função linear e, por consequência, é também uma função afim.
Podemos perceber em um gráfico quando a função é não linear, quando no resultado obtemos uma parábola, curvas ou retas não lineares, obtendo muitos valores de y para um x.
A função afim é qualquer função que possua a lei de formação y = ax + b, sendo a e b números reais e a diferente de zero. Desse modo, uma função afim é também uma função do primeiro grau, pois não apresenta produto ou potência de variáveis.
O enredo não linear não segue uma sequência cronológica, desenvolve-se descontinuamente, com saltos, antecipações, retrospectivas, cortes e com rupturas do tempo e do espaço em que se desenvolvem as ações. O tempo cronológico mistura-se ao psicológico, da duração das vivências dos personagens.
A função afim tem dois coeficientes: angular e linear. O coeficiente angular corresponde, na função, ao a. No gráfico, é a tangente do ângulo α (alfa), formado pela intersecção entre a reta da função e o eixo x. Enquanto isso, o coeficiente linear corresponde, na função, ao b.
Quando o termo independente (o que não tem letra) é igual a zero, então essa equação será homogênea. Exemplos: 7x = 10: é linear, pois a variável x tem expoente igual a um; 22x – 10y = 0: é linear, pois tanto a variável x quanto y tem expoente igual a um.
Designa-se por zero de uma função todo o valor da variável independente x que tem por imagem o valor zero. Por outras palavras, zero de uma função é todo o valor de x, pertencente ao domínio dessa função, tal que = 0.
Como descobrir a lei de formação de uma função linear?
Toda função é definida por uma lei de formação, no caso de uma função do 1º grau a lei de formação será a seguinte: y = ax + b, onde a e b são números reais e a ≠ 0. Esse tipo de função deve ser dos Reais para os Reais.
Em uma relação linear, as variáveis se movem na mesma direção, a uma taxa constante. O Gráfico 5 mostra as duas variáveis aumentando simultaneamente, mas não à mesma taxa. A relação é monotônica porém não linear.
Os sistemas lineares podem ser definidos como um conjunto de N equações que possuem, juntas, N incógnitas. Por exemplo, um sistema com 3 equações e 3 incógnitas, como o mostrado a seguir. Para sinalizar que as equações fazem parte de um sistema linear, é necessário adicionar o símbolo matemático da chave.
Um sistema linear é um conjunto de equações lineares, podendo ter várias incógnitas e várias equações. Existem vários métodos para resolvê-lo, independentemente da quantidade de equações. Existem três classificações para um sistema linear. Sistema possível determinado (SPD): quando possui uma única solução.
Não linear refere-se a todas as estruturas que não apresentam um único sentido. Estrutura que apresenta múltiplos caminhos e destinos, desencadeando em múltiplos finais.
Uma função linear é definida genericamente como f(x) = a.x. Esse é um caso particular de função afim, também conhecida como função de primeiro grau, contudo não existe valor para o coeficiente b, ou seja, b = 0.
A função afim é muito utilizada em vestibulares, porque aparece na maior parte dos gráficos e pode ser muito explorada em problemas matemáticos. Trata-se de uma função que se traduz como uma reta no plano cartesiano, por meio de uma função do primeiro grau.
A função linear é um caso particular de função afim que apresenta a lei de formação do tipo f(x) = ax, em que a é real e diferente de zero. Confira o que é uma função linear e como é o seu gráfico!
Para determinar o ponto em que o gráfico de uma função afim de lei f(x) = ax + b intercepta o eixo y, fazemos x = 0. Ou seja, para x = 0, y = b. Assim, o par ordenado (0,b) é o ponto de intersecção do gráfico com o eixo das ordenadas.