Desse modo, as retas possuem infinitos pontos e nenhum espaço entre eles. As retas são objetos que possuem uma dimensão apenas, assim, só é possível tomar uma medida em qualquer objeto que esteja definido dentro de uma reta: o comprimento.
Para desenhar uma reta, só são necessários dois pontos. Esse é mais um postulado proveniente da geometria. Uma reta é uma figura geométrica que possui uma única dimensão.
Portanto, retas podem ser “desenhadas” a partir de apenas dois pontos, contudo, elas são infinitas tanto na direção do primeiro ponto quanto na direção do segundo. Tendo em vista que as retas possuem infinitos pontos, conclui-se que elas também possuem comprimento infinito.
As retas são conjuntos de pontos que não fazem curvas. Elas são infinitas para as duas direções. Como esses pontos não estão no mesmo lugar, é possível medir a distância entre eles. Entretanto, como os pontos continuam não tendo dimensão ou forma, não é possível medir sua largura.
Qualquer ponto cujas coordenadas formam uma solução para equação da reta podemos dizer que este ponto pertence à reta. Para saber se um ponto pertence à uma reta basta verificar se suas coordenadas formam uma solução para a sua equação. Exemplo: A equação y = − 3 x + 1 é uma reta com coeficiente angular igual a -3.
O elemento mais simples de um plano é o ponto, uma entidade que não tem dimensões. Bastam três pontos para definir um plano. O segundo elemento mais simples é a reta – um conjunto de infinitos pontos, enfileirados, sempre em uma mesma direção e nos dois sentidos.
O ponto não tem dimensão. Ele pode ser, por exemplo, um toque da caneta no papel. Representamos pontos no espaço sempre com letras maiúsculas (A, B, P, M, ...), exemplo: Por um ponto no espaço, passam infinitas retas.
Existem infinitos pontos em cada reta e fora dela. Por um ponto passam infinitas retas. Existem infinitos pontos dentro e fora do plano. Para determinar uma reta é necessário dois pontos distintos.
A reta é a linha que possui uma única direção, sendo ilimitada nos dois sentidos de crescimento. Então, podemos afirmar que a reta é infinita e não possui começo nem fim. ✓ Por um ponto podemos traçar infinitas retas.
Existem vários tipos no estudo da geometria. As mais comuns são as inclinadas, horizontais, verticais, paralelas, coincidentes, reversas, coplanares, transversais, perpendiculares e retas concorrentes.
Na geometria moderna, uma reta é simplesmente tomada como um objeto indefinido com propriedades dadas por axiomas, mas às vezes é definida como um conjunto de pontos que obedecem a uma relação linear quando algum outro conceito fundamental é deixado indefinido.
A reta é formada por infinitos pontos que estão alinhados. Ela é ilimitada nos dois sentidos. Quando construímos uma reta devemos utilizar letras minúsculas para representá-la.
Com a equação reduzida da reta, é possível calcular quais são os pontos que pertencem a essa reta e quais não pertencem. O comportamento da reta pode ser descrito pela equação reduzida y = mx + n.
Uma linha reta ou, simplesmente, uma reta é uma linha que, à semelhança de outros elementos geométricos como, por exemplo, o ponto, não tem uma definição matemática rigorosa. Em termos simples poderá dizer-se que se trata de uma linha sem curvatura ou sinuosidade, sem espessura e de comprimento infinito.
Duas retas são concorrentes se possuírem apenas um ponto em comum. E seus coeficientes angulares poderão ser diferentes ou um existir e o outro não. As retas u e t são coincidentes e as inclinações das retas são diferentes de 90°. Assim, seus coeficientes angulares serão diferentes.
Numa reta e num plano existem infinitos pontos (dentro e fora dele). Dois pontos distintos determinam uma única reta que passa por eles; Três pontos não colineares determinam um único plano que passa por eles.