Existem vários tipos no estudo da geometria. As mais comuns são as inclinadas, horizontais, verticais, paralelas, coincidentes, reversas, coplanares, transversais, perpendiculares e retas concorrentes.
Retas paralelas: são retas que não possuem interseção e estão em um mesmo plano. Retas concorrentes são retas que têm um ponto em comum. As retas perpendiculares são retas concorrentes que formam entre si um ângulo reto. Retas reversas são retas que não têm interseção entre elas e que não são paralelas.
Retas são figuras geométricas planas ou espaciais que podem ser classificadas em concorrentes, coincidentes e paralelas. Ouça o texto abaixo! Na Geometria, as retas são definidas apenas como conjuntos de pontos. Sabemos, além disso, que as retas são linhas que não fazem curvas e que são ilimitadas e infinitas.
As retas podem ocupar três posições: horizontal, vertical e inclinada. A linha do horizonte está na posição horizontal. Toda reta que está em uma posição semelhante a da linha do horizonte, dizemos que é uma reta horizontal.
RETAS PARALELAS, CONCORRENTES, PERPENDICULARES E COINCIDENTES \Prof. Gis/
Como podemos nomear as retas?
Os segmentos de reta são classificados como: consecutivos, colineares, congruentes e adjacentes. Segmentos Consecutivos: Dois segmentos de reta são consecutivos se, a extremidade de um deles é também extremidade do outro, ou seja, uma extremidade de um coincide com uma extremidade do outro.
As mais comuns são as inclinadas, horizontais, verticais, paralelas, coincidentes, reversas, coplanares, transversais, perpendiculares e retas concorrentes.
Retas são figuras geométricas primitivas formadas por conjuntos de pontos. O fato de serem primitivas significa que não existe uma definição para elas, contudo, aceitamos que retas são linhas que não fazem curva.
Retas concorrentes possuem um ponto em comum, pois elas se cruzam. As retas paralelas não possuem ponto em comum. A semirreta possui origem, mas é ilimitada no outro sentido, isso é, possui início, mas não tem fim.
Portanto, retas podem ser “desenhadas” a partir de apenas dois pontos, contudo, elas são infinitas tanto na direção do primeiro ponto quanto na direção do segundo. Tendo em vista que as retas possuem infinitos pontos, conclui-se que elas também possuem comprimento infinito.
Retas paralelas são duas retas contidas em mesmo plano que não possuem nenhum ponto em comum, ou seja, são retas que nunca se cruzam. Existem outras posições possíveis para as retas: elas podem ser concorrentes, quando se encontram em um único ponto, ou coincidentes, quando possuem infinitos pontos em comum.
Os segmentos de retas possuem um ponto inicial e um ponto final. Eles podem ser consecutivos, adjacentes e colineares. Ouça o texto abaixo! Um segmento de reta nada mais é do que uma parte de uma reta que possui um ponto inicial e um ponto final, chamados de “extremos”.
A equação geral de uma reta é igual a ax + by + c = 0, em que a, b e c são coeficientes reais e a e b são diferentes de zero. Para encontrar a equação geral de uma reta, é necessário conhecer pelo menos dois pontos dessa equação.
A reta é a linha que possui uma única direção, sendo ilimitada nos dois sentidos de crescimento. Então, podemos afirmar que a reta é infinita e não possui começo nem fim. ✓ Por um ponto podemos traçar infinitas retas. ✓ Por dois pontos distintos podemos traçar uma única reta.
Em geometria, podemos classificar as retas em paralelas, concorrentes, perpendiculares ou coincidentes de acordo com os pontos que elas possuem em comum. Neste vídeo você aprenderá a diferença entre essas classificações a partir de exemplos práticos e muito bem ilustrados.
Retas transversais são retas que cruzam um par ou um feixe de retas paralelas. Ainda pensando nas ruas dos bairros e das cidades, quando temos uma visão panorâmica é possível encontrar ruas transversais. Observe um exemplo na magem abaixo. Imagem 2: Ruas transversais.
São definidas como retas concorrentes aquelas que se cruzam em um único ponto, formando quatro ângulos. De acordo com as medidas desses ângulos, elas ainda podem ser consideradas retas perpendiculares ou retas oblíquas.
Qualquer ponto cujas coordenadas formam uma solução para equação da reta podemos dizer que este ponto pertence à reta. Para saber se um ponto pertence à uma reta basta verificar se suas coordenadas formam uma solução para a sua equação. Exemplo: A equação y = − 3 x + 1 é uma reta com coeficiente angular igual a -3.
pontos são normalmente batizados com letras maiúsculas: A, B, C, O…; retas são geralmente indicadas por letras minúsculas: r, t, s…; e planos costumam ser indicados por letras do alfabeto grego: α (alfa), β (beta) e γ (gama).
As retas são conjuntos de pontos que não fazem curva, não possuem espaços entre os pontos e são infinitas para as duas direções. Ao sofrer um corte, uma reta transforma-se em duas semirretas. Por sua vez, ao sofrer um corte, uma semirreta transforma-se em um segmento de reta e em outra semirreta.