Uma função afim é considerada como linear se f(x) = ax, sendo o coeficiente angular diferente de zero e o coeficiente linear igual a zero (b = 0). Nesses casos a reta passará pela origem (0,0).
A função afim é qualquer função que possua a lei de formação y = ax + b, sendo a e b números reais e a diferente de zero. Desse modo, uma função afim é também uma função do primeiro grau, pois não apresenta produto ou potência de variáveis.
Enquanto uma equação linear tem uma forma básica, as equações não-lineares podem assumir muitas formas diferentes. A maneira mais fácil de determinar se uma equação é não-linear é se concentrar no termo “não-linear” em si.
Já uma função linear é um caso particular de função afim quando seu coeficiente linear é igual a zero, ou seja, sua forma geral é dada por y = ax. A grande diferença entre as duas é que a função linear sempre passa pela origem do sistema e a função afim é deslocada pelo valor de b.
A função afim, definida pela formação f(x) = ax + b ou y = ax + b, é classificada como função de primeiro grau, sendo os coeficientes a e b números reais e diferentes de zero.
FUNÇÃO AFIM | FUNÇÃO DO 1º GRAU | LEI DE FORMAÇÃO | AULA 1 - Professora Angela Matemática
O que é uma função afim linear?
A função linear é um caso particular de função do 1º grau ou função afim. Uma função afim é classificada como função linear caso ela possua lei de formação igual a f(x) = ax. Note, então, que para que a função afim seja uma função linear, o valor de b = 0.
Uma função linear é definida genericamente como f(x) = a.x. Esse é um caso particular de função afim, também conhecida como função de primeiro grau, contudo não existe valor para o coeficiente b, ou seja, b = 0.
A forma de demonstrar funções lineares é: qualquer mudança dada em "x", a mudança em "y" sempre será do mesmo valor. Por exemplo, para qualquer mudança de 1 unidade em "x", a mudança em "y" será sempre 3... será sempre 5... se sempre for do mesmo valor, estará lidando com uma função linear.
Função linear é o caso particular de função do 1° grau quando b = 0 . Assim, a forma geral de uma função linear é f(x)=ax. O gráfico de uma função linear é uma reta que passa pela origem, que é o ponto (0,0).
A função de primeiro grau ou função afim é uma norma matemática que relaciona as variáveis de uma equação, ou seja, a dependência de um elemento em relação ao outro. Por isso, a função de primeiro grau é utilizada para definir a relação entre as variáveis x e y. Isso porque para cada valor dado a x, determinará o de y.
Pela definição de função afim, temos que ela é determinada pela seguinte expressão f(x)=ax+b, ou seja, para determinar tal função, basta encontrarmos os coeficientes a, b.
Sistemas lineares são conjuntos de equações associadas entre si e que possuem duas ou mais variáveis. Em sistemas lineares, entram apenas equações lineares, ou seja, expressões onde o maior expoente das incógnitas é igual a 1.
Uma função afim ou função do 1° grau é caracterizada por apresentar uma lei de formação do tipo f(x) = a·x + b, na qual os coeficientes a e b são números reais, além de, necessariamente, a ser diferente de zero (a ≠ 0).
Para determinar o ponto em que o gráfico de uma função afim de lei f(x) = ax + b intercepta o eixo y, fazemos x = 0. Ou seja, para x = 0, y = b. Assim, o par ordenado (0,b) é o ponto de intersecção do gráfico com o eixo das ordenadas.
É uma equação com uma ou mais variável em que cada variável tem expoente igual a um e não pode existir multiplicação nem divisão entre elas. Assim, ax + by = 0 é uma equação linear, pois a variável é x e o seu expoente é igual a um (x¹) e a variável y também tem expoente igual a um (y¹).
O cálculo do metro linear pode ser feito basicamente com uma trena, fita métrica ou régua. Basta medir a distância de uma ponta a outra da parede, de todos os lados do cômodo e somar no final, ou seja, se são 4 paredes, você vai medir horizontalmente cada uma delas e somar no final.
O gráfico de uma função afim da forma f(x) = ax + b é sempre uma reta. O coeficiente “a” é o chamado de coeficiente angular e o coeficiente “b” é chamado de coeficiente linear.
Sejam A e B dois conjuntos. Conhecemos como função a relação entre os conjuntos A e B na qual, para todo elemento do conjunto A, há um único correspondente no conjunto B. Quando essa relação existe, ela é descrita da seguinte maneira f: A → B (função de A em B).
A função afim é muito utilizada em vestibulares, porque aparece na maior parte dos gráficos e pode ser muito explorada em problemas matemáticos. Trata-se de uma função que se traduz como uma reta no plano cartesiano, por meio de uma função do primeiro grau.
eu posso estar errado mas eu acredito que o nome "função afim" vem das tais "transformações afins" que levam conjuntos conexos em conjuntos conexos (do latim affinis significa conectado com ). O primeiro a usar esse termo foi o L. Euler que foi pioneiro no estudo avançado da geometria afim.