A probabilidade pode ser representada como fração, como porcentagem ou como número decimal. A probabilidade é sempre um número decimal entre 0 e 1, ou uma porcentagem entre 0% e 100%. Se P(A) = 0 então A é um evento impossível. Se P(A) = 1 então A é um evento certo.
A probabilidade clássica supõe um espaço amostral equiprovável para o cálculo de probabilidades. A probabilidade empírica (ou frequentista) considera que o cálculo de probabilidade deve ser realizado a partir de repetições do experimento e análise dos resultados.
As definições básicas de probabilidade são: experimento aleatório, ponto amostral, espaço amostral, evento e o cálculo da probabilidade. Probabilidade é o estudo das chances de obtenção de cada resultado de um experimento aleatório. A essas chances são atribuídos os números reais do intervalo entre 0 e 1.
“Quando um experimento se repete um grande número de vezes, a probabilidade (na definição pela freqüência relativa) de um evento tende para a probabilidade teórica”.
A primeira coisa que precisamos entender é que probabilidade é a chance de algo acontecer. Se falamos que há uma probabilidade de 10%, por exemplo, é a mesma coisa que dizer que há uma probabilidade de 10 sobre 100, porque é dez por cento. Isso significa que temos UMA chance em DEZ de algo ocorrer.
A função de probabilidade associa cada valor que a variável aleatória pode assumir à sua probabilidade de assumir esse valor. Podemos dizer que: Onde é a variável aleatória discreta. Por exemplo, vamos considerar o evento do lançamento de duas moedas e a gente quer saber quantas caras foram obtidas.
As probabilidades são utilizadas para exprimir a chance de ocorrência de determinado evento. Encontramos na natureza dois tipos de fenômenos: determinísticos e aleatórios. Os fenômenos determinísticos são aqueles em que os resultados são sempre os mesmos, qualquer que seja o número de ocorrência dos mesmos.
A teoria das probabilidades é o estudo matemático das probabilidades. Pierre Simon Laplace é considerado o fundador da teoria das probabilidades. Os teoremas de base das probabilidades podem ser demonstrados a partir dos axiomas de probabilidade e da teoria de conjuntos.
os estudos demográficos e, em especial, os estudos de incidência de doenças infecciosas e o efeito da vacinação ( exemplo de grande repercussão na época sendo o da varíola ) a construção das loterias nacionais e o estudo dos jogos de azar: carteados, roleta, lotos, etc.
Probabilidade é o estudo das chances de um determinado resultado ocorrer em um experimento em que os resultados são aleatórios. Em outras palavras, quando não é possível prever que resultado uma experiência produzirá, pode ser possível descobrir qual resultado apresenta mais chances de acontecer.
A probabilidade proporciona um modo de medir a incerteza e de mostrar aos estudantes como matematizar, como aplicar a matemática para resolver problemas reais.
A probabilidade é um campo da matemática que estuda as chances de que um experimento aleatório ocorra. A probabilidade é calculada dividindo-se o número de resultados favoráveis pelo número de resultados possíveis.
O conceito de probabilidade tem a ver com as chances de um evento específico acontecer em meio a um número "x" de tentativas. Para fazer o cálculo, basta dividir esse número de eventos pela quantidade de resultados possíveis.
O que é probabilidade? É o estudo de um número que representa as chances que determinado resultado apresenta de acontecer. Probabilidade é o estudo sobre experimentos que, mesmo realizados em condições bastante parecidas, apresentam resultados que não são possíveis de prever.
A probabilidade é um ramo da matemática que estuda maneiras de como estimar a chance de um determinado evento acontecer. Por exemplo, imagine que tenhamos uma urna com 10 bolas brancas e 20 bolas vermelhas.
A probabilidade simples surgiu através dos jogos de azar. Isso mesmo: a sorte e o azar nem sempre são conceitos abstratos. Geralmente, se um evento tem maior número de possibilidades de acontecer, então a probabilidade que aconteça também é maior, logo, você terá mais “sorte” ao apostar nesse evento.
O marco do início da Teoria das Probabilidades é considerado com a troca de correspondências entre os estudiosos franceses Blaise Pascal (1623 - 1662) e Pierre de Fermat (1601 - 1665). discussões e uma solução para um problema semelhante ao problema dos pontos (divisão de apostas).
6 + 6 = 12. Depois, dividido por 6 é igual a 2! Fazer a conta na ordem em que os elementos se apresentam é o caminho natural do raciocínio. Para o resultado ser 7 eu teria que primeiro dividir 6 pelo 6; que daria 1; que somados ao primeiro 6 daria 7.
Em Genética, também podemos calcular a probabilidade de dois eventos ocorrerem de forma mutuamente exclusiva, ou seja, a ocorrência de um significa que o outro não ocorrerá. É o que chamamos de regra do “ou”, pois ocorrerá apenas um ou outro evento. Para isso, basta somar as suas probabilidades individuais.