Uma função é uma relação matemática estabelecida entre duas variáveis. As funções podem ser injetoras, sobrejetoras, bijetoras e simples. Função é uma regra que relaciona cada elemento de um conjunto (representado pela variável x) a um único elemento de outro conjunto (representado pela variável y).
Uma definição mais formal, que estabelece uma relação entre dois conjuntos quaisquer, é a seguinte: Seja A um conjunto com elementos de e B um conjunto dos elementos de , a função é essa relação que associa a cada valor um único valor , denotada por: f : A → B .
Função é uma relação de um conjunto não vazio em outro conjunto também não vazio, em que cada elemento do primeiro conjunto relaciona-se com um único elemento do outro. As representações mais comuns das funções ocorrem no plano cartesiano. Estabelecemos uma função quando relacionamos uma ou mais grandezas.
Um exemplo de relação de função pode ser expresso por uma lei de formação que relaciona: o preço a ser pago em função da quantidade de litros de combustível abastecidos. Considerando o preço da gasolina igual a R$ 2,50, temos a seguinte lei de formação: f(x) = 2,50*x, onde f(x): preço a pagar e x: quantidade de litros.
Uma função é uma regra que relaciona cada elemento de um conjunto a um único elemento de outro. O primeiro conjunto é chamado de domínio, e o segundo, contradomínio da função. A função determina uma relação entre os elementos de dois conjuntos.
Uma função é uma relação matemática estabelecida entre duas variáveis. As funções podem ser injetoras, sobrejetoras, bijetoras e simples. Função é uma regra que relaciona cada elemento de um conjunto (representado pela variável x) a um único elemento de outro conjunto (representado pela variável y).
A função é uma relação entre dois conjuntos na qual há uma correspondência entre elementos de um conjunto A com elementos de um conjunto B. Para que essa relação entre o conjunto A e B seja uma função, cada elemento do conjunto A precisa ter um único correspondente no conjunto B.
As funções são utilizadas na representação cotidiana de situações que envolvam valores constantes e variáveis, sempre colocando um valor em função do outro. Por exemplo, ao abastecermos o carro no posto de gasolina, o preço a ser pago depende da quantidade de litros de combustível colocada no tanque.
A função E retornará VERDADEIRO se todos os seus argumentos forem avaliados como VERDADEIRO e retornará FALSO se um ou mais argumentos forem avaliados como FALSO. Um uso comum para a função E é expandir a utilidade de outras funções que realizam testes lógicos.
As funções possuem grande aplicabilidade nas situações em geral relacionadas ao ensino da Matemática. Utilizamos funções na Administração, na Economia, na Física, na Química, na Engenharia, nas Finanças, entre outras áreas do conhecimento.
A formação de uma função do 1º grau é expressa da seguinte forma: y = ax + b, onde a e b são números reais e a é diferente de 0. Consideremos x e y duas variáveis, sendo uma dependente da outra, isto é, para cada valor atribuído a x corresponde um valor para y.
A palavra função apareceu pela primeira vez em um manuscrito de Leibniz em 1673. Ele tomou função para designar de maneira geral a dependência de quantidades geométricas como subtangentes e subnormais. Ele também introduziu os termos constante, variável e parâmetro.
A noção de função surgiu como o instrumento matemático indispensável para o estudo quantitativo dos fenômenos naturais, iniciado por Galileu (1564-1642) e Kepler (1571-1630).
O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função.
Quais as 3 informações mais importantes de uma função?
Ela têm três partes principais: o nome da função, o tipo do resultado (que é um valor) que a função computa e retorna, e entre parênteses uma lista de parâmetros (também chamado de argumentos formais).
Na prática, para verificar se um gráfico é ou não função, basta traçar retas verticais ao longo do eixo horizontal (x). Se todas as retas interceptarem a função em apenas um ponto, então é função. Se alguma das retas interceptar o gráfico em menos de um ponto ou mais de um ponto, então não é função.
Matematicamente, um função de computação f é nula se, e somente se, sua execução deixa o estado do programa inalterado. Isto é, uma função nula é uma função de identidade cujo domínio e contradomínio são tanto o espaço de estado S do programa, e para os quais: f(s) = s para todos os elementos s em S.